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Generic Data Modeling for 
Clinical Repositories 

STEPHEN B. JOHNSON, PhD 

Abstract Objective: To construct a large-scale clinical repository that accurately captures 
a detailed understanding of the data vital to the process of health care and that provides highly 
efficient access to patient information for the users of a clinical information system. 

Des&n: Conventional approaches to data modeling encourage the development of a highly 
specific data schema in order to capture as much information as possible about a given domain. 
In contrast, current database technology functions most effectively for clinical databases when a 
generic data schema is used. The technique of “generic data modeling” is presented as a method 
of reconciling these opposing views of clinical data, using formal operations to transform a 
detailed schema into a generic one. 

Results: A complex schema consisting of hundreds of entities and representing a rich set of 
constraints about the patient care domain is transformed into a generic schema consisting of 
roughly two dozen tables. The resulting database design is efficient for patient-oriented queries 
and is highly flexible in adapting to the changing information needs of a health care institution, 
particularly changes involving the collection of new data elements. 

Conclusion: Conventional approaches to data modeling can be used to develop rich, complex 
models of clinical data that are useful for understanding and managing the process of patient 
care. Generic data modeling techniques can successfully transform a detailed design into an 
efficient generic design that is flexible enough to meet the needs of an operational clinical 
information system. 

n JAMIA. 1996;3:328-339. 

Caring for a patient is a complex process that involves 
many different professionals, organizations, and ma- 
terials. A key strategy pursued by many health care 
institutions is to collect as much information as pos- 
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sible about the process as it unfolds in order to max- 
imize sharing among the many participants, deepen 
understanding of the process, make improvements, 
and reduce cost. Different institutions have different 
levels of computerization, and they manage informa- 
tion in different ways,‘-’ so the term “clinical reposi- 
tory” is used in this article to denote a shared resource 
of patient data for the purpose of clinical care (in both 
the inpatient and outpatient settings), and the term 
“clinical information system” is used to refer to the 
collection of computer applications that collect, pro- 
cess, and display information maintained in the clin- 
ical repository. 

The construction of a clinical repository has two main 
objectives: 
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establishing a clear understanding of the data that 
are relevant to the health care process, and 

implement a database that performs efficiently for 
patient care tasks. 

The first objective is the province of data modeling,7,8 
and the second is the purpose of database design.‘,” 
Both of these disciplines are necessary for building a 
successful clinical information system; each faces dif- 
ferent obstacles. 

The goal of this paper is to reconcile the objectives of 
data modeling with the techniques of database design 
that have been found to be successful in production- 
oriented clinical information systems. The technique 
of “generic data modeling” is presented as a means 
of obtaining an efficient patient database design from 
the detailed descriptions that result from conventional 
approaches to data modeling. Formal methods are de- 
scribed that permit the transformation of a specific 
schema (useful as a high-level model of an institu- 
tion’s data) into a generic schema (useful for imple- 
mentation as a working database). This transforma- 
tion helps bridge the gap between data modeling and 
database design, and it makes explicit how these two 
disciplines are related in creating operational clinical 
information systems. 

Background 

Data modeling produces a formal description of the 
data of a given enterprise-a “conceptual schema.” 
This formal description represents concepts of interest 
to that domain (people, places, equipment, events, 
etc.), and it indicates how these entities are concep- 
tually related to one another (roles played in events, 
membership in organizations, ownership of equip- 
ment, location of physical objects, etc.). To be useful 
to an enterprise, the conceptual schema must repre- 
sent only those facts and constraints in a domain that 
are known to be true and on which there is agree- 
ment. Thus, the more detailed the conceptual schema, 
the more is known about the domain, and the greater 
the degree of agreement among the participants in the 
enterprise. 

Data modeling in health care”,” is a difficult and 
time-consuming task because of the vastness of the 
domain (a very large number of distinct concepts and 
ways in which these concepts may be related to one 
another), the complexity of the knowledge, and the 
wide variety of participants, all with slightly differing 
views about what the process is (physicians, nurses, 
therapist, technicians, administrators, clerks, etc.). 

Current understanding of the process of health care is 
incomplete, and consensus is lacking in certain areas, 
which limits the degree of formalization that is pos- 
sible. 

Database design seeks to produce a database that 
meets the needs of an enterprise by using available 
computer technology to implement the conceptual 
schema.7-10 The choice of technology can have an 
enormous impact on what can be achieved in an in- 
formation system. In industry today, there is a wide 
range of technologies in use: indexed files, hierarchi- 
cal databases, relational databases, object-oriented da- 
tabases, and heterogeneous systems that may combine 
several of these technologies.‘” This paper focuses on 
design issues for relational databases because the re- 
lational model is relatively easy to understand and 
because this technology is currently the most robust 
and pervasive for large-scale, production-oriented in- 
formation systems.‘3-‘5 

Database design for patient care systems must ad- 
dress two important requirements: rapid retrieval of 
data for individual patients, and adaptability to the 
changing information needs of an institution (new ap- 
plications, new queries and updates, new data ele- 
ments, etc.). A patient’s data must be retrievable as 
quickly as possible (less than one second for a typical 
transaction); the needs of the patient demand imme- 
diate intervention, and the responsibilities of health 
care personnel allow only limited time to interact with 
an information system. Adaptability is necessary be- 
cause formalized knowledge of the health care process 
is always incomplete and evolving. As a result, com- 
puter applications undergo frequent enhancement, 
and new computer systems are constantly being in- 
tegrated. The clinical information system must pro- 
vide a method to keep up with this environment of 
constant change without affecting the performance of 
the clinical repository. It would be unacceptable, for 
example, to shut down the system several times a 
month in order to accommodate application changes. 

Given the current state of the art in relational database 
technology, the objectives of data modeling and da- 
tabase design for patient care are in conflict. Although 
a highly detailed conceptual schema helps promote 
consistency and understanding of the data used by an 
enterprise, such a design will perform poorly when 
implemented because a highly detailed schema will 
be implemented as a large number of tables. This 
means that a given query may have to combine data 
from a many different tables by performing “join” op- 
erations, which greatly increase query execution 
time.‘,“’ Moreover, a highly detailed schema tends to 
be very sensitive to change because individual col- 
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Table 1 n 

Patient Table with Specific Columns 

Patient ID Birthdate sex 

12345 06-22-95 M 
22222 02-29-52 F 

SSN Address Telephone Person ID 

123-45-6789 123 E 45 St., NY, NY 212-555-1234 112233 
222-22-2222 22 w 22 St., NY, NY 212-555-2222 987654 

umns must be added or re-defined. Changes to the 
repository schema have been shown to significantly 
increase the amount of software maintenance required 
for the applications that access the repository.‘4,‘6 In 
addition, each alteration to the schema degrades per- 
formance, ultimately requiring that the database’s 
physical structure be reorganized on disk.‘.” In a large 
hospital, in which millions of entries for visits, drugs, 
laboratory tests, etc., are made to the repository each 
year, reorganization of database tables may require 
significant down time (hours or even days). 

An alternative strategy is to employ a generic schema 
far the clinical repository.‘7-20 A generic schema has a 
small number of generalized concepts and thus will 
be implemented as a database with only a few tables. 
In such a design, related data tend to be present in 
the same table, obviating the need for expensive join 
operations. In addition, the design is highly flexible, 
since different values or “codes” are used to indicate 
different data elements instead of specific column 
names.” Applications can store new values in the ta- 
bles without having to alter the repository schema. 
Tables 1 and 2 illustrate this difference in flexibility 
for patient demographic data. Adding a new demo- 
graphic element such as “ethnicity” requires adding 
a new column to Table 1. In contrast, the design of 
Table 2 requires only that a new code for ethnicity be 
defined to store in the Demographic-Type column; no 
change to the table schema is needed. 

Using generic patient databases and coded values has 
a long and important tradition in health care infor- 
mation systems.1-6 Although many implementations 
have been chosen, each system employs a generic 
schema for the patient database and some form of 
“data dictionary” to manage the coded data elements 

Table 2 n 

Demographic Table with Generic Columns 

Patient ID Demographic-Type Demographic-Value 

12345 Birthdate 06-22-95 
12345 Sex M 
12345 SSN 123-45-6789 
12345 Address 123 E 45 St., NY, NY 
12345 Telephone 212-555-1234 
12345 Person ID 112233 

that can be stored in the patient database.22,23 This de- 
sign was crucial to achieve adequate performance for 
patient-oriented queries and to provide flexibility for 
change.24*25 

The basic steps of generic data modeling for a clinical 
information system are: 

1. Develop a detailed schema of the medical data that 
will be managed by the system. 

2. Filter out concepts and relations that do not vary 
across patient records. 

3. Transform the detailed schema into a generic 
schema. 

4. Implement the generic schema using a database 
management system. 

These steps are explained in the sections below. The 
technique is presented from the perspective of design- 
ing a new database. However, methods are also useful 
in other data engineering tasks, such as integrating 
legacy database systems and maintaining operational 
repositories. Since reverse-engineering and system 
maintenance are complex topics in themselves, they 
will not be discussed further in this paper. 

Conceptual Schema for Clinical Data 

A conceptual schema for patient care is a representa- 
tion of the data required to manage the health care 
process. The developers of a clinical repository con- 
struct this “community view” of the institution’s data 
by integrating the many local views held by physi- 
cians, nurses, administrators, researchers, etc. This 
process of integration means resolving many discrep- 
ancies and making compromises to produce the best 
possible statement about the data on which the insti- 
tution’s members can agree. 

This data modeling activity can benefit from using a 
very high-level model (formalism) with rich seman- 
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Figure 1 Example of a conceptual graph in the graph- 
ical format. The graph depicts a patient whose sex is 
male and whose birth date is 6/22/1995. A concept may 
be connected to other concepts by one or more relations. 
Each concept has a type, which denotes the category to 
which it belongs, and a referent, which identifies a spe- 
cific individual within that category. 

tics. In the data modeling phase, developers should 
be concerned with data representation, and not with 
issues of data storage and access efficiency. The con- 
ceptual schema should correspond as closely as pos- 
sible to expert understanding of the medical domain. 
Concepts in the schema must use terms that are read- 
ily understandable by medical personnel, and the 
schema should be free of computer jargon. One way 
to confirm these properties is to ensure that the model 
can be easily translated into natural language sen- 
tences that can be verified by domain experts. 

Such a schema typically has many concepts and a rich 
classification structure that provides many speciali- 
zations and generalizations of medical concepts. A 
given concept may belong to many different classes. 
The semantics of the model are carried by a rich set 
of connections between concepts (e.g., part-whole 
structures) that define how concepts in the medical 
domain are related to one another. 

This paper presents a simple conceptual schema for 
clinical data. This schema is only a small fragment of 
what would be required in a real clinical information 
system. The formalism of Conceptual Graphs (CG)26 
was chosen for several reasons. A general-purpose 
graphic notation (Fig. l), CG can represent everything 
that can be modeled using the Entity Relationship” or 
Structural Model,‘” both useful notations for database 
modeling. In addition, CG has a standard linear no- 
tation that uses conventional typewriter symbols (Fig. 
2) and provides a compact medium for developing a 
schema. Also, CG can be used to represent the behav- 
ior of objects (although that is not a focus of this pa- 
per) and so can represent the object schemata pro- 
duced by Object Oriented Analysis’ and other. 
methods. The advantage of CG is that it has a straight- 
forward mapping into predicate calculus, so the for- 
mal meaning of each construction is unambiguous 
and clear. Finally, several researchers have adopted 
CG for various purposes in medical informatics.29-32 

Patient: 12346 Gender : mate 

The schema is shown in two parts. The first part is 
the classification hierarchy of concept types (Fig. 3). 
Subtypes are shown indented under a supertype. The 
topmost types are Person, Organization, Agent, 
Event, Physical Object, and Abstraction. These are 
subtypes of the most general type “top,” which is rep- 
resented by the symbol T (not shown). Note that a 
given type can occur in more than one place in the 
hierarchy. For example, Provider is both a Person and 
an Agent. The second part of the schema consists of 
“canonical graphs,” which define the conceptual re- 
lations that pertain to each concept (Fig. 4). Each re- 
lation connects a given concept to another concept in 
the schema. For example, Service-Event has a recip- 
ient (the patient on whose behalf events are per- 
formed), an agent (who performs the action), an as- 
sistant (a provider who assists the activity), a recorder 
(a provider who records information about the event), 
and a location (the place within the institution where 
the event occurs). Relations are “inherited” from their 
supertype. For example, Event has a start-time and an 
end-time. Service also has these relations, since Event 
is its supertype. This aspect of CG allows a very com- 
pact schemata to be created. Some concepts have been 
elaborated further in this schema. For example, Num- 
ber and Units are not further defined. 

Clinical events are the core of the conceptual 
schema;11’33 they are events that involve the patient 

[Patient : 123451 - 
(sex) -> [Gender : male] 
(birth-date) -> [Date : 1995-06-221. 

Figure 2 Example of a conceptual graph in the linear 
format. The graph depicts a patient whose sex is male 
and whose birth date is 6/22/1995. Each concept ap- 
pears in square brackets, and each relation appears in 
parentheses. Relations emanating from a concept are 
shown indented underneath, with an arrow pointing to 
the related concept. 
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Person 
Patient 
Provider 

Organization 
Patient-Care-Organization 

Hospital 
Clinic 

Service-Department 
Laboratory 
Pharmacy 

Agent 
Provider 
Organization 

Event 
Service 

Laboratory-Procedure 
Laboratorv-Panel 

Chem-7 
SMAC 

Laboratory-Test 
Serum-Sodium-Test 
Serum-Potassium-Test 

Drug-Administration 
Encounter 

Inpatient-Visit 
Outpatient-Visit 

Order 
Laboratory-Order 
Pharmacy-Order 

Physical Object 
Chemical 

Potassium 
Sodium 

Drug 
Antibiotic 

Penicillin 
Ampicillin 

Specimen 
Serum 
Blood 

Measurable-Substance 

Abstraction 
Temporal-Abstraction 

Frequency 
Date 

Date-Time 
Spatial-Abstraction 

Institution-Location 
Administration-Route 

Quantitative-Abstraction 
Quantity 
Number 
Units 

[Person]- 
(child4 4Personl 

. I L 

(ssn) ->[SSN] 
(address) -9Addressl 
(telephone) $Teleph&e]. 

[Provider]- 
(employed-by) -> 
[Patient-Care-Organization]. 

[Event]- 
(recipient) ->[Patient] 
(agent) ->[Agent] 
(assistant) -s[Provider] 
(recorder) ->[Provider] 
(location) ->[Location] 
(start-time) ->[Date-Time] 
(end-time) ->[Date-Time]. 

[Service]- 
(agent) ->[Service-Department] 
(occurs-in) ->[Encounter] 
(ordered-as) ->[Order]. 

[Encounter]- 
(agent) -> 
[Patient-Care-Organization]. 

[Order]- 
(agent) ->[Physician] 
(quantity) -z[Number] 
(frequency) -s[Frequency] 
(event-start) ->[Date-Time] 
(event-end) ->[Date-Time] 
(occurs-in) ->(Encounter]. 

[Drug-Administration]- 
(aaent) -9Nursel 
(q;antity)-->[Quantity] 
(ordered-as) ->IPharmacv-Order]. 

I  -  

[Laboratory-Procedurel- 
(agent) ->[Laboratory]. 
(ordered-as) -s[Laboratory-Order]. 

[Laboratory-Order]- 
(panel) ->[Laboratory-Panel]. 

[Pharmacy-Order]- 
(dose) ->[Quantity] 
(route) ->[Route] 
(drug) -z[Drug]. 

[Chem-fl- 
(contains) ->I Sodium-Test1 
(contains) +[Potassium-Test]. 

[Laboratory-Panell- 
(contains) ->[Laboratory-Test]. 

[Laboratory-Test]- 
(measures) ->[Measurable- 

[Substance] 
(samples) -> [Specimen] 
(value) ->[Quantity]. 

[Serum-Sodium-Testl- 
(measures) ->[Sodium] 
(samples) -> [Serum]. 

[Serum-Potassium-Test]- 
(measures) ->[Potassium] 
(samples) -> [Serum]. 

[Quantity]- 
(number) ->[Number] 
(units) ->[Units]. 

Figure 3 Simple type hierarchy for clinical domain. 
Subtypes are indented under their supertypes. Asubtype 
appears in multiple places in the outline when it has 
more than one supertype. 

Figure 4 Simple canon of conceptual graphs for clini- 
cal domain. More complex graphs can be constructed 
from these canonical graphs. 
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during the provision of care. Clinical events include 
admission, discharge, clinic visit, drug administration, 
diagnostic procedures, therapeutic procedures, etc. 
Starting from the Event concept in the schema, note 
that certain key relations link clinical events with 
other concepts: 

people: patient, health care providers, family mem- 
bers, insurance policy holders; 

organizations: ancillary departments, inpatient ad- 
ministration, medical services, outpatient clinics; 

physical objects: drugs, chemicals, specimens; 

locations: patient rooms, emergency departments, op- 
erating rooms, nursing stations, physician offices; 

abstractions: times, quantities. 

Filtering Out Patient-Invariant Constructs 

The primary purpose of the clinical repository (as de- 
fined in this paper) is to provide efficient access to the 
data of individual patients in both inpatient and out- 
patient settings. Therefore, the primary interest when 
implementing the repository .is in the data which can 
vary from patient to patient. In developing the con- 
ceptual schema in the previous step, some constructs 
may be employed that provide background or ex- 
planatory information about other concepts in the 
schema but which do not vary from patient to patient. 
These “patient-invariant” constructs should be elimi- 
nated from the operational patient database to reduce 
redundancy. 

For example, the conceptual schema in Figures 3 and 
4 shows a number of concepts and relations that are 
useful in clarifying the meaning of other concepts but 
which are patient invariant. Laboratory tests have the 
relations measures and samples, these identify for 
each test the substance measured and the type of sam- 
ple analyzed, respectively. These relations define ex- 
actly what the Serum-Sodium-Test concept is: a lab- 
oratory test that measures sodium levels in serum 
samples. In a given patient record, it is sufficient to 
record that the patient had a serum sodium test. Facts 
about what the test measures and the samples used 
are constant across all patients. Therefore, these rela- 
tions need not be included in the repository schema 
used by the operational clinical information system. 

This separation of highly detailed knowledge about 
clinical data from the essential facts about the care of 
patients results in a more generic schema. This step 
and the following one may give rise to a concern that 
semantic information is being lost; background 
knowledge about tests and drugs is clearly important 

and must be maintained somewhere. In many clinical 
information systems, this semantic information is 
maintained in the clinical data dictionary.‘2,23 The 
dictionary will have a concept for each item of data 
that can be stored in the repository, such as laboratory 
tests, surgical procedures, and drugs. Any patient-in- 
variant information that further defines the meaning 
of these concepts may also be stored there. Thus, any 
constraints that must be imposed on data as they are 
collected by applications and stored in the repository 
in the operational clinical information can be enforced 
using semantic information stored in the dictionary. 

This division of the conceptual schema into two 
pieces-a generic repository and a dictionary of back- 
ground information-has been chosen by many clin- 
ical information systems. It is the design feature that 
permits the most efficient retrieval of individual pa- 
tient data and adaptation to changes in clinical appli- 
cations. 

Generic Transformations 

After patient-invariant constructs have been elimi- 
nated, the conceptual schema can be greatly simpli- 
fied by collapsing the many detailed concepts into a 
small set of generic concepts. In addition, the various 
detailed relations that connect concepts in the concep- 
tual schema can be collapsed into generic “associa- 
tions.” This process of mapping highly detailed con- 
cepts into general ones is termed “generic trans- 
formation.” In this paper, two important generic 
transformations are illustrated. The methods are 
shown through examples drawn from Figures 3 and 
4, and the formal definitions of the transformations 
are given in Appendix A. These transformations are 
similar to those in Saltor et al:% but use the semanti- 
cally rich model of conceptual graphs rather than the 
relational model. 

The first generic transformation is called “flattening.” 
This transformation is employed to reduce the clas- 
sification hierarchy in the original schema, which has 
many levels, into a much smaller number of levels 
(often a single level). The second transformation is 
called “relation merging.” This transformation com- 
bines several different relations in the conceptual 
schema into a single generic relation. 

The result of applying generic transformations to the 
conceptual schema is a generic schema that is suitable 
for creating a database of patient information. Each 
transformation reduces the semantic content of the re- 
pository schema by making it more generic. In clinical 
information systems that have a sophisticated data 
dictionary, these semantic constraints are not lost but 
instead are transferred to the dictionary. 
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[Laboratory-Procedure-Event: P127]- 
(type+Iot=m-71 
(agent) ->[Labofatory] 
(contains) ->[Laboratory-Procedure-Event: TO051 
(contains) ->[Laboratory-Procedure-Event: T006]. 

[Laboratory-Procedure-Event: TOOF+ 
(type)->[Serum-Sodium-Test] 
(agent) -r+atwxatory] 
(value) ->[Quantity]. 

[Laboratory-Procedure-Event: TOO6]- 
(type)->[Serum-Potassium-Test] 
(agent) ->ILaboratory] 
(value) ->[Quantity]. 

Figure 5 Three different instances of the Lab-Proce- 
dure-Event concept: a Chem-7 panel and two tests (Se- 
rum-Sodium-Test, Serum-Potassium-Test), which are 
part of the panel. 

Flattening Example 

Consider the hierarchy of laboratory procedure con- 
cepts in Figures 3 and 4. The types are Lab-Procedure, 
Lab-Panel, Chem-7, SMAC, Lab-Test, Serum-So- 
dium-Test, and Serum-Potassium-Test. In a real 
schema, there would be hundreds of panels and tests. 
When the flattening transformation (defined in Ap- 
pendix A) is applied to this portion of the schema, the 
distinctions among these subtypes disappear. The 
many subtypes merge into a single new type, which 
can be called Lab-Procedure-Event. In addition, all 
the relations in these graphs are combined into one 
graph. As explained in the previous section, the re- 
lations for measures and samples are not included; 
they are considered to be descriptive information that 
belongs in the dictionary. All of these concepts col- 
lapse into the following single concept: 

[Lab-Procedure-Event> 
(type) -[Lab-Procedure] 
(agent) +[Laboratory] 
(contains) +[Lab-Procedure-Event] 
(value) -+[Quantity]. 

This graph says that every Lab-Procedure-Event may 
contain other procedures (a property of panels) and 
that Lab-Procedure-Event may have a value (a prop- 
erty of Lab-Test). 

Figure 5 shows three ways of filling in this graph, for 
a Chem-7 panel, and two tests (Serum-Sodium-Test, 
Serum-Potassium-Test) that are part of the panel. 
This example demonstrates why it is necessary to add 
the new relation “type” to the Lab-Procedure-Event 
graph. Without this relation, it would be impossible 
to determine what kind of panel or test is denoted by 
each graph. In general, whenever a hierarchy of con- 
cepts is collapsed, it is necessary to add the new re- 

lation “type” in order to keep track of which specific 
member of the hierarchy is being referenced. 

A complete conceptual schema would have hundreds 
of concepts for panels and individual laboratory tests. 
The generic schema need contain only one. Each time 
a Lab-Procedure-Event concept is stored in a patient 
record, the value of the relation “type” will be the 
identifier of one of the Lab-Procedure concepts. This 
identifier can be thought of as a pointer into the clin- 
ical data dictionary, where additional information 
about the panel or laboratory test may be obtained. 
The flattening transformation is the key to the flexi- 
bility of the repository: new identifiers can be added 
to the dictionary at any time, and the repository 
schema does not have to change. 

Relation Merging Example 

A given concept in the conceptual schema may have 
many detailed relations in it (directly or through in- 
heritance). These relations become columns in a rela- 
tional implementation (or fields in a file system, in- 
stance variables in an object-oriented system). Many 
detailed columns lead to inflexibility in the repository. 
As the clinical information system evolves, new col- 
umns must be added; this is extremely costly when 
tables are very large.14”6 A solution to this design is to 
merge multiple relations into a single, generic rela- 
tion. 

As an example, consider the Patient entity in the con- 
ceptual schema in Figure 4. This concept has relations 
for the date of birth, sex, social security number, home 
address, and telephone number: 

[Patient]- 
(birth-date) +[Date] 
(sex) +[Gender] 
(ssn) +[SSN] 
(address) -[Address] 
(telephone) +[Telephone]. 

This concept can be implemented in a relational da- 
tabase simply by creating a table, the columns of 
which have these names and data types. However, 
many other relations are possible for patient demo- 
graphics, so administrators of the repository may find 
themselves frequently adding new columns to this ta- 
ble. 

An alternative is to merge these relations into a single 
generic relation by applying the relation merging 
transformation (formally defined in Appendix A). The 
result is two concepts: the original Patient concept, 
which has a single generic relation, and a new concept 
called Demographic: 
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[Patient]- 
(attribute) -+[Demographic]. 

[Demographicl- 
(type) *[Demographic-Type] 
(value) +[Demographic-Value]. 

This transformation promotes the original relations 
(birth date, sex, ssn, address, telephone) into seman- 
tic types, which are made into subtypes of a new type 
called Demographic-Type. The various values that 
these relations could have are grouped under a new 
type called Demographic-Value. Figure 6 shows how 
this generic schema might be filled in. This schema is 
extremely simple and very flexible. Whenever a new 
demographic attribute is needed (e.g., ethnicity), it is 
necessary only to assign a new identifier for it in the 
dictionary. A relational implementation of this schema 
is shown in Table 2 and discussed in the following 
section. 

For another example, consider the various events that 
can be related to a given Service-Event in the schema: 

[Service-Event]- 
. . . 
(occurs-in) +[Encounter] 
(ordered-as) +[Order-Event]. 

This graph states that a Service-Event may occur as 
part of an Encounter and may be requested by a given 
Order. A complete schema would contain many other 
relations to different types of events. To obtain a more 
generic schema, the relation merging transformation 
can be applied. This transformation merges the spe- 
cific relations into a single generic relation. The result 
in this example is the statement that a Service-Event 
is related to one more Related-Event concept. 

[Service-Event]- 

irelated-to) -[Related-Event]. 
[Related-Event]- 

(type) +[Event-Relation] 
(event) -[Event]. 

The relations “occurs-in” and “ordered-as” are pro- 
moted to semantic types, which are both subtypes of 
a new type, Event-Relation. When a particular Re- 
lated-Event is filled in for a given patient’s Service- 
Event, the value of the relation “type” is an identifier 
of one of the Event-Relation concepts (Fig. 7). This 
identifier serves as a pointer into the dictionary, where 
additional knowledge about event relations may be 
maintained. This knowledge might include a type hi- 
erarchy of event relations and information about ex- 

[Patient: 12345]- 
(attribute) ->[Demographic: DOOl] 
(attribute) ->[Demographic: DO021 
(attribute) ->[Demographic: D003]. 

[Demographic: DOOl]- 
(type) ->[Birth-Date] 
(value) ->[Date: 1995-O&22]. 

[Demographic: DOO2]- 
(type) ->tsexl 
(value) ->[Gender: male]. 

[Demographic: D003]- 
(type) ->WNl 
(value) ->[Number: 123-45-67891. 

Figure 6 Generic schema for patient demographics. 
The Patient concept can have any number of demo- 
graphic attributes. Each demographic attribute has a 
type and a value. 

actly which events can be connected to one another 
and in what manner. The advantage of this schema is 
that new relations between events (e.g., causality) can 
easily be added by defining new instances of Event- 
Relation in the dictionary. 

Repository Implementation 

The generic repository schema is easily converted into 
a database. The most practical choice now for a large- 
scale clinical information system in terms of speed 
and storage capacity is a relational database,13-15 al- 
though some object-oriented databases may be con- 
sidered. Each concept in the schema becomes a table 
in the relational database in the following way’? 

1. The relations of a given concept that have atomic 
domains (Date, Date-Time, Number, etc.) become 
columns of the corresponding table, with the ap- 
propriate data type (date, timestamp, integer, etc.). 

[Service: SOOl]- 
. . . 
(related-to) ->[Related-Event: ROOl] 
(related-to) ->[Related-Event: R002]. 

[Related-Event: ROOl]- 
(type) ->[Occurs-In] 
(event) ->[Encounter: EOOl]. 

[Related-Event: R002]- 
(type) ->[Ordered-As] 
(event) ->[Order: OOOl]. 

Figure 7 Generic schema for relations between clinical 
events. The Service concept has two related events: an 
order and an encounter. The two Related-Event concepts 
specify the type of relation and the identifier of the re- 
lated event. 
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2. The key of the table is either a column correspond- 
ing to the unique identifier of the concept or some 
combination of columns that determines a unique 
row of the table. 

3. Conceptual relations that connect one concept to 
another in the schema become “foreign key” col- 
umns in the table. Additional columns must be 
added to correspond to the key columns of the 
referenced table. 

As an example, consider the Patient concept as it is 
defined in the conceptual schema of Figure 4 (before 
the transformations of the previous section are ap- 
plied). There are several atomic attributes: birthdate, 
sex, ssn, address, and telephone. These become col- 
umns with the following data types, respectively: 
date, character (fixed length l), decimal (length 9), 
character (maximum length 256), and decimal (length 
10). (In real systems, Address would probably be bro- 
ken down into multiple columns for street, city, state, 
etc.) The unique identifier of Patient is the medical 
record number, so this becomes the primary key col- 
umn of the table. In this database, all people (patients, 
providers, family members) can be grouped into a ta- 
ble called Person, in which common attributes (such 
as names) are stored. The supertype relation between 
Patient and Person is implemented as a foreign key 
by adding the unique identifier of the Person table 
(Person ID) as a column of the Patient table (Table 1). 

Using the generic schema obtained by transforma- 
tions in the previous section (Fig. 6), a generic table 
is created that can be called Demographic (Table 2). 
The conceptual relation “attribute” in the generic 
schema is implemented by adding a column for the 
patient identifier (a foreign key). In this way, a given 
patient may have any number of demographic attrib- 
utes. (Further discussion of relation cardinality is be- 
yond the scope of this paper.) The Demographic-Type 
column will contain identifiers for birthdate, sex, ssn, 
address, and telephone. The values for these various 
demographics are stored in the Demographic-Value 
column. Note that this column must store a wide va- 
riety of data types (date, character, decimal). There are 
several techniques to accommodate this diversity; the 
simplest is to define the column as character data of 
the maximum length necessary. 

After generic transformations have been applied to a 
conceptual schema for patient data and then imple- 
mented as a relational database, the result is a data- 
base with a small number of tables. The implemen- 
tation of a generic clinical repository at Columbia- 
Presbyterian Medical Center, operational now for five 
years, demonstrates that approximately two dozen 

generic tables are adequate to support a complex clin- 
ical information system.“82o This design is similar to 
that used by earlier systems, although these designs 
did not use relational technology.‘-5 Each generic table 
may eventually hold tens or hundreds of millions of 
rows of patient data if the repository is used as a lon- 
gitudinal record from which no information can be 
deleted. 

The database schema focuses on patient events; thus, 
most tables will have a column corresponding to the 
“recipient” relation in the repository schema. The do- 
main of this column is patient identifiers (medical rec- 
ord numbers). Depending on the database software 
employed to implement the repository schema, the 
patient identifier column can be used to: 

1. Index rows of the tables, providing fast access to 
patient events when a particular patient identifier 
is given. 

2. Cluster rows on physical storage, further improv- 
ing queries that retrieve data of a single patient by 
reducing the disk pages that must be examined by 
the database management system (DBMS). 

3. Distribute data across different disks, enabling que- 
ries about different patients to execute in parallel. 

4. Distribute data across different servers, reducing 
the transaction load on a given server. 

One of the advantages of the generic design is that 
few relational joins are required when retrieving data. 
Queries that join data from multiple tables may in- 
volve a large number of disk accesses and may require 
several seconds or even minutes to complete. Because 
the generic design employs so few tables, related data 
tend to be stored in the same table.17-19 For example, 
using generic transformations, all observational data, 
such as laboratories, radiology, pathology, drug ad- 
ministration, etc., may be stored in a single table. Any 
query that compares data in this table (e.g., laboratory 
and drug administration data) may be satisfied with- 
out an expensive join. 

Discussion 

How Generic Should the Repository Be? 

Applying the transformations of Appendix A to the 
sample schema in Figures 3 and 4 yields the following 
repository schema: 
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[Concept]- 
(related-to) +[Related-Concept]. 

[Related-Concept]- 
(type) -+[Relation] 
(concept) +[Concept]. 

The dictionary would provide a type hierarchy of 
Concepts and Relations, with various names and 
identifiers for each, and it would contain semantics 
for the system, specifying which concepts are related 
to each other. This model could be implemented in a 
relational database with two tables. However, none of 
the techniques described in the previous section for 
physically managing these tables would apply, since 
there is no patient identifier. Thus, this schema is far 
too general. 

At the other extreme, the schema in Figures 4 and 5 
might be implemented directly as the clinical reposi- 
tory. This design might work well for a clinical re- 
search database, but it would perform poorly for pa- 
tient care applications. Such a schema tends to spread 
a single patient’s data across many tables. When data 
are retrieved, a large number of joins may be required, 
resulting in sluggish response times. A further prob- 
lem is that this relational database would have very 
specific names for columns, derived from the concep- 
tual relations in the schema (as is seen in the previous 
section for the Patient table). If any conceptual rela- 
tion has been omitted from the schema, a table may 
have to be changed, and such schema changes can 
have an enormous impact.“,” With tables containing 
millions of rows, the cost of physically reorganizing 
data can be very high. If changes are frequent (typical 
in large, heterogeneous environments like academic 
medical centers), this architecture is unworkable. 

Limitations of Generic Data Modeling 

Generic data modeling entails an optimization of the 
clinical schema: the schema should contain as much 
semantics as possible to provide a useful structure for 
clinical events, but it should be sufficiently “open 
ended” to allow for flexibility. Experience with the 
clinical information system at Columbia-Presbyterian 
Medical Center suggests that a database schema based 
on clinical events having roughly the granularity dis- 
cussed in this article (see Conceptual Schema for Clin- 
ical Data, above) results in a good tradeoff between 
flexibility and performance.” 

However, these advantages still come at a certain 
price. The process of flattening the conceptual schema 
produces a useful generic schema, but constraints 
about the clinical domain are removed from the re- 
pository. In certain implementations, losing these con- 
straints may introduce an inconsistent use of data in 

any computer applications that interact with the re- 
pository. For example, the generic schema may re- 
quire that providers participate in clinical events, but 
it may not control the identifiers used for providers 
throughout the institution; without centralized con- 
trol, different hospital departments may report which 
providers are involved in an event but may employ 
identifiers that differ from those of other departments. 
It was mentioned earlier in this article (see Filtering 
Out Patient-Invariant Constructs, above) that con- 
straints that operate on a finer granularity than the 
clinical repository could, in principle, be enforced by 
a central data dictionary. For example, when storing 
data in the repository, such a centralized resource 
could be used to translate provider identifiers into a 
standardized representation (just as identifiers for 
medications and other data elements must be trans- 
lated). Few clinical information systems have imple- 
mented this design to its fullest extent. Thus, large, 
heterogeneous organizations may have to tolerate a 
certain amount of inconsistency. 

On the other hand, the lack of specificity that arises 
from generic data modeling has certain strategic ad- 
vantages. Because the clinical domain is so complex, 
obtaining agreement across the institution on a wide 
range of data is a long and difficult process. The ge- 
neric model can be viewed as the core that comprises 
those clinical data on which there is certain agreement 
and which are thought to change in structure at the 
slowest rate. This core enables integration efforts to 
get started, and it supports an incremental approach 
to large-scale information system development.6 

This paper has drawn attention to the serious prob- 
lems in creating clinical information systems that can 
adapt to changing requirements. Managing a patient 
database schema in a production environment over 
any significant period of time presents enormous de- 
sign challenges. The behavioral aspects of clinical in- 
formation systems (“processes,” “methods,” or “ser- 
vices”) present even greater difficulties, since these 
tend to be the most volatile characteristic of an infor- 
mation system.8 It is not clear that partitioning the 
conceptual schema into a repository of generic objects 
and a “dictionary” of specific objects can accommo- 
date changes in system behavior. In the simple client- 
server architecture described in this paper, clients 
share repository data but are responsible for their own 
processing. In the future, architectures using “medi- 
ators” that combine both data and process in one 
schema may overcome these limitations.” 

Conclusion 
A clinical repository must support many diverse ap- 
plications. The repository must provide continuous 
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access to data while it accommodates constant 
changes with respect to the needs of applications. In 
particular, the repository schema must be able to 
evolve without having an adverse effect on the appli- 
cations. Traditionally, clinical information systems 
have addressed this problem by employing a generic 
schema for the repository, usually in combination 
with a dictionary of data elements. 

In recent years, techniques of data modeling have 
evolved that enable the construction of large, detailed 
models of the information used in a domain. These 
formal techniques are essential in health care because 
of the size and complexity of this field. Although re- 
lational database technology has made tremendous 
improvements since the early days of clinical infor- 
mation systems, traditional approaches to database 
design have failed to produce information systems 
that can perform efficiently for large patient care ap- 
plications. This paper offers a methodology that rec- 
onciles detail-oriented data modeling with perfor- 
mance-oriented database design. The techniques of 
generic data modeling may be employed to produce 
efficient, flexible database designs that can be used in 
operational systems. 
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APPENDIX A 

Generic Transformations 

Flattening 

Given a canonical graph whose root is type A, together 
with the set of canonical graphs whose root types are B,, 
BZ, . . , B,, such that B, is a subtype of A, for 1 5 i 5 n: 

WI- 
(a4 -+[&I 

i&l -4&l. 

El- 
@,,) -4Gl 

ii,) -4cim1. 

replace these canonical graphs with a single canonical 
graph whose root is type A’, such that the arcs of this 
graph are the union of the arcs of the original graph of 
type A, plus all the arcs of the graphs of type B,: 

[A’]- 
(type) +[A1 
(al) -4All 
. 

(an) +[A4 
(b,J +K,,l 
(b,J -&,I 

i&A -+K”ll 
bJ -+Ll 

ii) -4C”,l. 

An additional arc with a distinct name such as “type” 
must be added to the new graph. The value of this arc 
specifies which subtype of A is denoted by a particular 
instance. 

Relation Merging 

Given a canonical graph whose root is type A, with 
arcs a,, a,, . . . , a, connecting to types (respectively) 
B,, E, . . . , B,: 

[Al- 

replace this canonical graph with the following 
graphs: 

[Al -+W -4Rl. 

PI +(a) +#I. 
[&I -+(a) +P%l. 
[&I -+(a) +P21. 
. . 
[&I +(a) +BJ. 

Where R is a generic relation for A, and B is the least 
supertype of B1, B2, . . . , B,. Each original relation a, is 
promoted to a type A,, where each A, is a subtype of 
R. These graphs maintain the original restrictions on 
what can be connected to what. 

This type hierarchy of relations can then be further 
compressed using the flattening transform above: 

IN --W +lR’l. 

W’l- 
(type) -4Rl 
64 --@I. 


